A nonparametric spatial model for periodontal data with non-random missingness.
نویسندگان
چکیده
Periodontal disease progression is often quantified by clinical attachment level (CAL) defined as the distance down a tooth's root that is detached from the surrounding bone. Measured at 6 locations per tooth throughout the mouth (excluding the molars), it gives rise to a dependent data set-up. These data are often reduced to a one-number summary, such as the whole mouth average or the number of observations greater than a threshold, to be used as the response in a regression to identify important covariates related to the current state of a subject's periodontal health. Rather than a simple one-number summary, we set forward to analyze all available CAL data for each subject, exploiting the presence of spatial dependence, non-stationarity, and non-normality. Also, many subjects have a considerable proportion of missing teeth which cannot be considered missing at random because periodontal disease is the leading cause of adult tooth loss. Under a Bayesian paradigm, we propose a nonparametric flexible spatial (joint) model of observed CAL and the location of missing tooth via kernel convolution methods, incorporating the aforementioned features of CAL data under a unified framework. Application of this methodology to a data set recording the periodontal health of an African-American population, as well as simulation studies reveal the gain in model fit and inference, and provides a new perspective into unraveling covariate-response relationships in presence of complexities posed by these data.
منابع مشابه
Nonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}
The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...
متن کاملA Latent Factor Model for Spatial Data with Informative Missingness.
A large amount of data is typically collected during a periodontal exam. Analyzing these data poses several challenges. Several types of measurements are taken at many locations throughout the mouth. These spatially-referenced data are a mix of binary and continuous responses, making joint modeling difficult. Also, most patients have missing teeth. Periodontal disease is a leading cause of toot...
متن کاملAdditive hazards regression with censoring indicators missing at random.
In this article, the authors consider a semiparametric additive hazards regression model for right-censored data that allows some censoring indicators to be missing at random. They develop a class of estimating equations and use an inverse probability weighted approach to estimate the regression parameters. Nonparametric smoothing techniques are employed to estimate the probability of non-missi...
متن کاملNonparametric Imputation of Missing Values for Estimating Equation Based Inference
We consider an empirical likelihood inference for parameters defined by general estimating equations when some components of the random observations are subject to missingness. As the nature of the estimating equations is wide ranging, we propose a nonparametric imputation of the missing values from a kernel estimator of the conditional distribution of the missing variable given the always obse...
متن کاملA Comparison of Thin Plate and Spherical Splines with Multiple Regression
Thin plate and spherical splines are nonparametric methods suitable for spatial data analysis. Thin plate splines acquire efficient practical and high precision solutions in spatial interpolations. Two components in the model fitting is considered: spatial deviations of data and the model roughness. On the other hand, in parametric regression, the relationship between explanatory and response v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Statistical Association
دوره 108 503 شماره
صفحات -
تاریخ انتشار 2013